Nguồn Chất thải phóng xạ

Chất thải phóng xạ đến từ nhiều nguồn khác nhau. Ở những nước có nhà máy điện hạt nhân, vũ khí hạt nhân, hay nhà máy xử lý nhiên liệu hạt nhân, phần lớn chất thải bắt nguồn từ chu trình nhiên liệu hạt nhân và tái chế vũ khí hạt nhân. Một số nguồn khác bao gồm chất thải y tế và công nghiệp, cũng như chất phóng xạ xuất hiện tự nhiên (NORM), chúng được tập trung lại thông qua việc xử lý hay tiêu thụ than, dầu khí, và một số khoáng chất như bên dưới.

Chu trình nhiên liệu hạt nhân

Giai đoạn đầu

Chất thải từ giai đoạn đầu trong chu trình nhiên liệu hạt nhân thường là chất thải phóng xạ alpha từ việc khai thác urani, thường chứa Radi và sản phẩm phân rã của Radi.

Urani dioxit (UO2) đậm đặc từ các mỏ có tính phóng xạ gấp hàng ngàn lần đá hoa cương dùng trong xây dựng. Nó được tinh chế từ Urania (U3O8), rồi được biến đổi thành khí urani hexafluorua (UF6). UF6 trải qua quá trình làm giàu urani để tăng lượng U-235 từ 0.7% đến khoảng 4.4% (LEU). Sau đó được biến thành oxit gốm cứng (UO2) để tạo nên nhiên liệu của lò phản ứng.[14]

Sản phẩm phụ chính của quá trình làm giàu Urani là Urani nghèo (DU), chủ yếu gồm đồng vị U-238, với tỉ lệ U-235 khoảng 0.3%. Nó được chứa trong UF6 hoặc U3O8. Khối lượng riêng cực kỳ cao của nó có một số ứng dụng như đan chống tăng, và thậm chí là sống thuyền buồm ít nhất một lần.[15] Nó cũng được dùng với plutoni để làm MOX (nhiên liệu oxit hỗn hợp) và để pha loãng (làm nghèo) Urani được làm giàu có nguồn gốc từ vũ khí, để được chuyển hướng làm nhiên liệu cho lò phản ứng.

Giai đoạn cuối

Giai đoạn cuối của chu trình nhiên liệu hạt nhân, phần lớn là nhiên liệu hạt nhân đã qua sử dụng, chứa sản phẩm phân hạch phát ra bức xạ beta và gamma, actini phóng xạ hạt alpha như urani-234 (chu kỳ bán rã 245 ngàn năm), neptuni-237 (2.144 triệu năm), plutoni-238 (87.7 năm) và americi-241 (432 năm), thậm chí là chất phát xạ neutron như californi (chu kỳ bán rã 898 năm đối với Cf-251). Những đồng vị này được hình thành trong các lò phản ứng hạt nhân.

Cần phải phân biệt giữa việc xử lý urani để sản xuất nhiên liệu và việc tái chế nhiên liệu đã qua sử dụng. Nhiên liệu đã qua sử dụng chứa sản phẩm phân hạch có tính phóng xạ cao (xem chất thải cấp cao ở dưới), trong đó có nhiều sản phẩm hấp thụ neutron, gọi là chất độc neutron. Ngay cả khi loại bỏ các thanh điều khiển, chúng vẫn sẽ hấp thụ neutron nhiều đến một mức nhất định khi phản ứng dây chuyền ngừng lại. Khi ấy nhiên liệu trong lò phản ứng phải được thay thế bằng nhiên liệu mới, tuy rằng lượng urani-235plutoni vẫn còn đáng kể. Tại Mỹ, nhiên liệu đã qua sử dụng này thường được "chứa", trong khi ở những nước như Nga, Anh, Pháp, Nhật Bản và Ấn Độ, nó được tái chế để loại bỏ các sản phẩm phân hạch rồi được tái sử dụng.[16] Sản phẩm phân hạch ấy là một dạng đậm đặc của chất thải cấp cao, cũng như những hóa chất được dùng trong quá trình xử lý.

Thành phần nhiên liệu và tính phóng xạ lâu dài

cường độ phóng xạ của U-233 trong ba loại nhiên liệu. Với MOX, lượng U-233 tăng trong 650 ngàn năm đầu do sự phân rã của Np-237 tạo ra trong lò phản ứng bởi sự hấp thụ neutron của U-235.Tổng cường độ phóng xạ của ba loại nhiên liệu. Trong vùng 1 ta có phóng xạ của hạt nhân tuổi thọ ngắn, vùng 2 là Sr-90Cs-137, và vùng 3 là Np-237 cùng U-233.

Việc sử dụng nhiều loại nhiên liệu trong lò phản ứng hạt nhân tạo ra thành phần các loại nhiên liệu hạt nhân đã qua sử dụng (NLĐQSD) khác nhau, với mức độ phóng xạ theo thời gian khác nhau.

Chất thải phóng xạ tuổi thọ cao từ giai đoạn cuối của chu trình nhiên liệu ảnh hưởng đến việc quản lý chất thải cho NLĐQSD. Đối với phân rã phóng xạ dài hạn, các Actini có trong NLĐQSD đóng vai trò quan trọng do chúng có chu kỳ bán rã dài đặc trưng. Tùy vào nhiên liệu dùng trong lò phản ứng hạt nhân, thành phần Actini trong NLĐQSD sẽ có sự khác biệt.

Một ví dụ là việc sử dụng thori làm nhiên liệu hạt nhân. Th-232 là một kim loại giàu có thể trải qua một phản ứng bắt neutron và hai phân rã beta trừ để tạo thành kim loại phân hạch U-233. Do đó, NLĐQSD của chu trình có thori sẽ chứa U-233. Sự phân rã của nó tác động lớn đến đường mức độ phóng xạ dài hạn của NLĐQSD trong khoảng một triệu năm. So sánh giữa cường độ phóng xạ của U-233 cho ba loại NLĐQSD được biểu diễn trong biểu đồ bên phải. Nhiên liệu được dùng là thori cùng plutoni lò phản ứng (RGPu), thori cùng plutoni vũ khí (WGPu) và nhiên liệu oxit hỗn hợp (MOX, không có thori). Với RGPu và WGPu, có thể thấy lượng U-233 ban đầu và phân rã trong khoảng một triệu năm. Điều này ảnh hưởng đến tổng mức độ phóng xạ của ba loại nhiên liệu. Sự vắng mặt của U-233 và các sản phẩm phụ của nó trong nhiên liệu MOX dẫn đến cường độ phóng xạ thấp hơn trong vùng 3 của đồ thị dưới, trong khi các đường biểu diễn RGPu và WGPu cao hơn do vẫn còn U-233 không phân rã hết. Việc tái chế hạt nhân có thể loại bỏ các Actini từ NLĐQSD để sử dụng hoặc phá hủy (xem Sản phẩm phân hạch tuổi thọ cao).

Lo ngại về phổ biến vũ khí hạt nhân

Vì urani và plutoni là vật liệu cho vũ khí hạt nhân, nhiều người lo ngại về sự phổ biến của chúng. Plutoni thường là (trong nhiên liệu đã qua sử dụng) plutoni lò phản ứng. Plutoni-239, rất thích hợp cho vũ khí hạt nhân, chứa một lượng lớn tạp chất không mong muốn như: plutoni-240, plutoni-241, and plutoni-238. Rất khó để tách chiết những đồng vị này, và có những cách ít tốn kém hơn để thu được vật liệu phân hạch (ví dụ như, làm giàu urani hay các lò phản ứng sản xuất plutoni chuyên dụng).[17]

Chất thải cấp cao chứa rất nhiều sản phẩm phân hạch có tính phóng xạ cao, hầu hết có tuổi thọ tương đối ngắn. Điều này dấy lên lo ngại rằng nếu chất thải được lưu trữ, có thể là trong kho địa chất sâu, qua nhiều năm sản phẩm phân hạch phân rã, làm giảm tính phóng xạ của chất thải khiến plutoni dễ tiếp cận hơn. Tạp chất Pu-240 phân rã nhanh hơn Pu-239, làm chất lượng của vật liệu tăng dần theo thời gian (trong khi số lượng của nó giảm theo thời gian). Vì thế, một số ý kiến cho rằng, khi thời gian trôi, những khu vực lưu trữ có nguy cơ trở thành "mỏ plutoni", từ đó vật liệu cho vũ khí hạt nhân có thể thu được tương đối dễ dàng. Những ý kiến phản bác chỉ ra rằng việc thu hồi vật liệu có ích từ những kho lưu trữ được đóng kín khó đến mức những phương pháp khác còn đáng xem xét hơn. Cụ thể, nhiệt độ (80 độ C với đá ở xung quanh) và tính phóng xạ cao khiến việc khai thác những kho lưu trữ này đặc biệt khó khăn, còn các phương pháp làm giàu tốn nhiền tiền bạc.[18]

Pu-239 phân rã thành U-235 có chu kỳ bán rã rất dài (khoảng 109 năm) và phù hợp để dùng trong vũ khí hạt nhân. Tuy nhiên, các lò phản ứng hiện đại làm giàu U-235 tương đối vừa phải so với U-238, nên U-238 đóng vai trò là chất biến tính cho U-235 được tạo ra do plutoni phẫn rã.

Một giải pháp là tái chế plutoni để làm nhiên liệu, như trong lò phản ứng neutron nhanh. Trong các lò phản ứng nhanh tích hợp, phần plutoni và urani riêng biệt chứa tạp chất là các Actini và không thể dùng làm vũ khí hạt nhân.

Tháo dỡ vũ khí hạt nhân

Chất thải từ việc tháo dỡ vũ khí hạt nhân hiếm khi chứa phóng xạ beta hay gamma ngoại trừ tritiamerici. Nhiều khả năng nó chỉ có các actini phóng xạ alpha như Pu-239, một vật liệu phân hạch dùng trong bom nguyên tử, cùng một số vật liệu với cường độ phóng xạ cao hơn nhiều như Pu-238 hay Po.

Trong quá khứ tác nhân kích hoạt neutron cho bom nguyên tử thường là berili và một chất phóng xạ alpha mạnh như poloni; có thể thay thế poloni với Pu-238. Vì lý do quốc phòng, thiết kế chi tiết của bom nguyên tử hiện đại thường không được công bố rộng rãi. Một số loại bom có thể có máy phát nhiệt điện hạt nhân phóng xạ dùng Pu-238 làm nguồn cấp điện lâu dài cho các thiết bị điện tử khác.

Nhiều khả năng là vật liệu phân hạch của một quả bom cũ cần tân trang sẽ chứa sản phẩm phân rã của những đồng vị của plutoni dùng trong nó, có thể gồm gồm U-236 từ Pu-240 lẫn tạp chất, cùng với U-235 từ sự phân rã của Pu-239. Do các đồng vị Pu này có chu kỳ bán rã tương đối dài, các chất thải do vật liệu trong quả bom phân rã là rất ít, và chắc chắn, ít nguy hiểm hơn nhiều (thậm chí về cường độ phóng xạ) so với chính Pu-239.

Phân rã beta của Pu-241 tạo thành Am-241; sự gia tăng americi có thể nghiêm trọng hơn là sự phân rã của Pu-239 và Pu-240 do americi là một chất phóng xạ gamma (tăng sự phơi nhiễm bên ngoài với con người) và phóng xạ alpha làm tăng nhiệt. Có một số cách để tách plutoni khỏi americi; bao gồm các quy trình nhiệt độ cao và tách chiết bằng dung môi nước/hữu cơ. Quy trình PUREX (Tách chiết oxi hóa khử Plutoni và Urani) thu gọn có thể dùng cho việc phân tách này. Urani trong tự nhiên không phân hạch được do nó chứa 99.3% U-238 và chỉ 0.7% là U-235.

Chất thải tàn dư

Bắt nguồn từ các hoạt động trong ngành công nghiệp radi, khai thác urani, và các chương trình quân sự trong quá khứ, nhiều khu vực hiện nay bị nhiễm xạ. Chỉ riêng nước Mỹ, Bộ Năng lượng (DOE) khẳng định có "hàng triệu gallon chất thải phóng xạ", "hàng ngàn tấn nhiên liệu hạt nhân đã qua sử dụng và vật liệu" cũng như "một lượng lớn đất và nước bị ô nhiễm."[19] Mặc dù lượng chất thải rất lớn, Bộ Năng lượng đã đặt mục tiêu làm sạch tất cả những nơi bị ô nhiễm trước năm 2025.[19] Ví dụ, trung tâm sản xuất nguyên liệu Fernald, bang Ohio có "31 triệu pound sản phẩm urani", "2.5 tỉ pound chất thải", "2.75 triệu yard khối đất và mảnh vụn nhiễm xạ", và một phần rộng "223 acre của Tầng ngậm nước Miami Lớn có mức urani vượt quá tiêu chuẩn uống được."[19] Hoa Kỳ có ít nhất 108 địa điểm được cho là bị nhiễm xạ và không thể sử dụng, nhiều nơi rộng hàng ngàn mẫu Anh.[19][20] DOE mong muốn sẽ làm sạch hoặc giảm thiểu phần lớn hoặc tất cả trước 2025, sử dụng một số phương pháp hiện đại như geomelting,[cần dẫn nguồn] tuy nhiên sẽ rất khó khăn và phải thừa nhận một số nơi không thể được phục hồi. Trong số 108 địa điểm này, Phòng thí nghiệm Quốc gia Oak Ridge, có ít nhất "167 nơi rò rỉ chất phóng xạ" tại một trong ba phân khu của khu vực rộng 37.000 mẫu Anh (150 km2) này.[19] Một số địa điểm có đặc điểm đơn giản hơn và việc dọn dẹp đã được DOE hoàn thành, hoặc ít nhất là đóng cửa những khu vực đó.[19]

Y tế

Chất thải y tế phóng xạ thường chứa các chất phóng xạ betatia gamma và thường là chất thải cấp thấp.[21] Trong chẩn đoán y tế hạt nhân một số chất phóng xạ gamma ngắn hạn như tecneti-99m được sử dụng. Có thể loại bỏ phần lớn chất này bằng cách để nó phân rã trong thời gian ngắn trước khi xử lý như chất thải thông thường. Các đồng vị khác được dùng trong y dược, với chu kỳ bán rã trong ngoặc đơn, gồm:

Công nghiệp

Chất thải có nguồn gốc công nghiệp có thể chứa chất phóng xạ alpha, beta, neutron hoặc gamma. Phóng xạ gamma được dùng trong X quang còn chất phát xạ neutron được dùng trong nhiều lĩnh vực như thăm dò giếng dầu.[22]

Vật liệu phóng xạ tự nhiên

Lượng đồng vị phóng xạ uranithori thải ra mỗi năm từ việc đốt than, được Phòng thí nghiệm Quốc gia Oak Ridge dự đoán sẽ tăng đến 2.9 triệu tấn trong giai đoạn 1937–2040, với lượng than đốt xấp xỉ 637 tỉ tấn trên toàn thế giới.[23]

Các chất có chứa phóng xạ tự nhiên được gọi là NORM. Sau khi quá trình xử lý của con người phơi nhiễm hoặc tích tụ tính phóng xạ (như khai thác mỏ đưa than lên mặt đất hay đốt than tạo ra tro cô đặc), chúng trở thành chất phóng xạ tự nhiên được công nghệ tăng cường (TENORM).[24] Rất nhiều chất thải loại này là chất phát xạ hạt alpha từ các chuỗi phẫn rã của uranithori. Nguồn phóng xạ chính trong cơ thể con người là kali-40 (40K), vào khoảng 17 mg trong cơ thể và thu vào 0.4 mg mỗi ngày.[25] Hầu hết các loại đá, tùy vào thành phần, có mức độ phóng xạ thấp. Thường nằm trong khoảng 1 milisievert (mSv) đến 13 mSv mỗi năm tùy vị trí, phơi nhiễm phóng xạ trung bình vào mức 2.0 mSv trên đầu người mỗi năm.[26] Lượng phóng xạ này chiếm phần lớn lượng phóng xạ con người thường thu nhận (với sự phơi nhiễm trung bình mỗi năm từ những nguồn khác khoảng 0.6 mSv theo các xét nghiệm y tế, 0.4 mSv từ các tia vũ trụ, 0.005 mSv từ tàn dư các cuộc thử nghiệm hạt nhân trong khí quyển trong quá khứ, 0.005 mSv từ phơi nhiễm công việc, 0.002 mSv từ thảm họa Chernobyl, và 0.0002 mSv từ chu trình nhiên liệu hạt nhân).[26]

TENORM không được kiểm soát hạn chế bằng chất thải lò phản ứng hạt nhân, tuy nhiên nguy cơ phóng xạ của những vật liệu này là tương đương.[27]

Than

Than chứa một lượng nhỏ chất phóng xạ như urani, bari, thori và kali, nhưng, trong trường hợp than nguyên chất, nồng độ trung bình của những chất này ít hơn nhiều so với trong vỏ Trái Đất. Địa tầng xung quanh, nếu là đá phiến sét hay đá bùn, thường chứa nhiều phóng xạ hơn trung bình cũng như thành phần tro của than.[23][28] Do khó cháy, những chất khoáng có cường độ phóng xạ cao tập trung nhiều trong tro bay.[23] Tính phóng xạ của tro bay xấp xỉ bằng với đá phiến sét và nhỏ hơn đá phosphat, nhưng lại nguy hiểm hơn do một lượng nhỏ tro bay trong không khí có thể bị con người hít vào.[29] Theo báo cáo của Hội đồng Quốc gia về Bảo vệ và Đo lường Phóng xạ Hoa Kỳ, phơi nhiễm dân số từ nhà máy điện 1000-MWe vào khoảng 490 rem-người/năm đối với nhà máy điện than, gấp hơn 100 lần so với mức 4,8 rem-người/năm của nhà máy điện hạt nhân. (Liều phơi nhiễm từ chu trình nhiên liệu hạt nhân là 136 rem-người/năm; con số tương ứng cho việc sử dụng than từ khi khai thác đến lúc bỏ đi "có lẽ là ẩn số".)[23]

Dầu khí

Chất thải từ ngành công nghiệp dầukhí thường chứa radi và các sản phẩm phân rã của nó. Cặn sulphat từ mỏ dầu có thể chứa một lượng lớn radi, trong khi nước, dầu và khí từ giếng dầu thường chứa radon. Radon phân rã thành các chất rắn phóng xạ tạo nên lớp phủ trong lòng đường ống dẫn. Trong các nhà máy lọc dầu, khu vực xử lý propan thường bị nhiễm phóng xạ nhiều hơn do radon có nhiệt độ sôi gần với propan.[30]

Tài liệu tham khảo

WikiPedia: Chất thải phóng xạ http://www.enprotec-inc.com/Presentations/NORM.pdf http://www.janes.com/defence/news/jdw/jdw010108_1_... http://www.logwell.com/tech/nuclear/index.html http://www.nature.com/news/policy-reassess-new-mex... http://www.neimagazine.com/features/featureiron-bo... http://analysis.nuclearenergyinsider.com/operation... http://www.nuclearhydrocarbons.com/ http://uk.reuters.com/article/oilRpt/idUKL24650850... http://uk.reuters.com/article/rbssIndustryMaterial... http://www.scientificamerican.com/article/presiden...